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ANALYSIS 

The eigenvalue spectrum of the Rayleigh equation is examined in this paper using three different 
solution techniques. The Rayleigh equation governs the inviscid instability of linear disturbances 
superimposed on a parallel basic flow U ( y ) .  The equation may be written, 

[ (NU - 0 )  ($ - 2 )  - a $1 v̂  = 0, 

where G is the complex amplitude of the velocity perturbation in the y-direction. u denotes the 
wave number and o is the frequency. In a spatial stability analysis it is assumed that the frequency 
is real and the wave number is complex. Thus, the disturbances are periodic in time and grow or 
decay with downstream distance. Since the homogeneous free shear layer is convectively unstable, 
these solutions are related to the asymptotic response of the shear layer to a periodic initial 
disturbance. 

For the free shear layer the boundary conditions may be written, 

fi-0, y++co .  (2) 

Equations (1) and (2) provide a homogeneous boundary value problem that may be solved for the 
dispersion relationship, 

a = C I ( 0 ) .  (3) 

In the present analysis, a simple second-order finite difference scheme and two spectral 
methods are used to discretize the Rayleigh equation. These include the Chebyshev tau (CT) and 
a Chebyshev collocation (CC) method. Each of the three approximation methods produces an 
eigenvalue problem in which the eigenvalue, a, appears non-linearly. That is, 

D,(a )v  = 0, (4) 
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where 

&(a )  = c 0 a 3  + C1a’ + C2a + c3. 

C,,, C1, C2 and C3 are the ( N -  1) x ( N -  I )  coefficient matrices of the lambda matrix D3(a) .  
N denotes zither the number of grid points in the FD and CC methods or the number of the 
Chebyshev polynomials used in the CT method. The components of the eigenvector, v, are 
either the expansion coefficients of the Chebyshev series approximation or the solution vectors 
themselves. The eigenvalues of the system are the roots of the characteristic equation, 

detID3(a)l = 0. (5 )  

Two methods have been used to solve the eigenvalue problem (5).  In the first, the linear 
companion matrix (LCM) method, the problem is reduced to a generalized eigenvalue problem 
through the introduction of a new solution vector. The resulting companion matrix of the matrix 
polynomial is of order 3 x ( N  - 1 )  in the present case. This method provides an approximation to 
the entire eigenvalue spectrum. The second technique used, the matrix factorization (MF) 
method, involves only matrices of order ( N -  1). This method, however, resolves only a subset of 
the entire eigenvalue spectrum. The details of the formulation of the two methods can be found in 
Bridges and Morris.’ 

The eigenvalue spectrum of the Rayleigh equation consists of a discrete component and two 
continuous parts. The discrete component of the spectrum is associated with the convective 
instability. Consequently, when one is concerned only with a criterion for instability, for 
a particular shear flow, the continuous part of the eigenvalue spectrum is generally i g n ~ r e d . ~  
Nevertheless, an eigenvalue spectrum is made complete only with the inclusion of the continuous 
branches. An arbitrary disturbance cannot be represented properly without knowledge of the 
complete eigenvalue spectrum. Therefore, a good approximation to the entire eigenvalue spec- 
trum is important to the solution of the initial-value problem in hydrodynamic stability. 

In addition to a finite number of discrete values of a that satisfy the dispersion relation (3), there 
are two branches of a continuous eigenvalue spectrum associated with the critical point singular- 
ity at  y =  y,, of the Rayleigh equation. That is, at 

aU(y , )  - w = 0. (6) 

U ( y )  = &[I + tanh(y)]. (7) 

(i) ai = 0; a, 2 w, (8) 

(ii) a ieR;  ct,-+co. (9) 

In the present calculations, the basic velocity profile for the free shear layer is assumed to be, 

In this case, the two branches of the continuous spectrum are given by 

Case4 considered this branch of the eigenvalue spectrum for Couette flow. The eigenfunctions 
decay exponentially away from y = y ,  and their slope is discontinuous at y=yc.  Equation (9) 
represents the special case where U(y,)=O. The two other branches of the continuous spectrum 
are related to bounded solutions of the asymptotic form of the Rayleigh equation in the far field, 

since d2  U/dy’+O as y-, k 03. These are the components of the continuous spectrum associated 
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with the domain unboundedness and can be combined as, 

U, = 0, u ~ E R .  (1 1) 

The corresponding eigenfunctions are purely periodic. 
In order to distinguish more easily between the discrete component and the continuous 

component of the eigenvalue spectrum, a transformation of the eigenvalue has been used in 
conjunction with the matrix factorization method. The transformation is given by 

(12) 
1 

@=-  

( X f  - @I’ 
The lambda matrix then becomes, 

i 3 ( 6 )  = e o h 3  + + e2& + e3. (13) 

This transformation insures that the eigenvalues ,Of D 3 ( a ) ,  that are in-the vicinity of af,  appear in 
the set of eigenvalues of the dominant solvent of D ( 6 ) .  A solvent of D 3 ( 6 )  is said to be dominant 
if the magnitudes of every one of the eigcnvalues of the solvent are greater than the magnitudes of 
the eigenvalues of the other solvents of D 3 ( 6 ) .  An algorithm developed by Dennis et aL5 has been 
used to find the dominant solvent of the matrix polynomial. The eigenvalues of the dominant 
solvent can then be obtained using standard techniques for algebraic eigenvalue problems. The 
eigenvalues calculated by the three spatial discretizations are refined with the iterative procedure 
of Lancaster.6 

The application of spectral and finite difference approximations, in conjunction with global 
eigenvalue solution methods, can be found in Bridges and Morris’ and Malik,7 among others. 
Further details of the present analysis can be found in Liou.’ 

RESULTS 

A square-root transformation is used to map the unbounded physical domain to the domain, 
[ - 1, 11, on which the Chebyshev polynomials are defined. The transformation used is, 

Y 
(r’ +Y’)~’’’ Z =  

where r is a scaling factor. The transformation produces no singularities at the end points of the 
transformed domain and the convergence of the global approximations is retained.’ The scaling 
factor r controls the distribution of grid points. Its optimum value, for which the solutions are 
most accurate, may depend on both the number of grid points and the discretization scheme. 
Boyd” used a steepest descent method to calculate the optimum choice of the mapping 
parameter in the application of a Chebyshev polynomial approximation to a known, explicit 
function. However, analytic evaluation of the optimum mapping parameter for boundary value 
problems would be extremely difficult. In the present calculations the optimum value of r has 
been determined experimentally. In addition, Boyd” used mappings in the complex plane to 
avoid singularities associated with the critical point of the Rayleigh equation and its branch cut. 
Optimum mapping parameters were proposed. In the present calculations the discrete eigen- 
values represent unstable solutions and no contour deformation is required to avoid the critical 
point singularity. 
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Figure 1 shows the order of accuracy of the predicted discrete spectrum using the LCM method 
and for w=O.2. The absolute error, E, is defined by, 

& = ( a  - a,\, 

where 01, is the eigenvalue calculated using a shooting method. In the shooting procedure, the 
Rayleigh equation is integrated in the interval, [ - 7,7], with 8000 grid points using a fourth- 
order, fixed step size Runge-Kutta method. This gives, 

(15) 

a, = 0.3826245 - i0.2276903. 

For the fine grid spacing, the value of 01, can be considered numerically exact and may be used to 
compare with solutions of other numerical methods. For each of the three spatial discretization 
methods, the predicted discrete eigenvalues agree very well with a,, even for small values of N .  In 
fact, for N =  10, the error for each of the three discretization methods are approximately 1%. 
Nevertheless, the spectral methods converge faster than the FD method. In Reference 8 it has also 
been shown that the dependence of the prediction of the discrete eigenvalues on the value of the 
scaling factor r is weak, and this dependence diminishes as the value of N increases. 

It should be noted that, for each of the three discretization methods, the predicted discrete 
eigenvalue spectrum obtained with the LCM method match at least to the eighth digit with those 
obtained by the M F  method with af = a,. The effect of the value of tlf on the M F  predictions of the 
discrete eigenvalue is also minimal. For instance, for N = 28 and at = (- 0.3,0.2), the magnitude of 
the error of the CC/MF prediction of the discrete eigenvalue is 0.0050, compared to 0.0036 for the 
prediction with the CC/LCM combination. Thus, for spatial linear instability calculations that 
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Figure 1. Absolute Error E, equation (15) ,  in the discrete eigenvalue spectrum: + Chebyshev collocation method; 0, 
finite difference method; +, Chebyshev tau method 
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Figure 2. Eigenvalue spectra for w=0.2: x , eigenvalues associated with the unbounded domain; 0, eigenvalues 
associated with the singularity of the Rayleigh equation; 0, discrete spectrum. (a) N =  17; (b) N =76 
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require the discrete eigenvalues, either one of the eigenvalue solution techniques, the LCM and 
the MF method, can predict the discrete part of the eigenvalue spectrum satisfactorily. 

Figures 2(a) and 2(b) show the entire calculated eigenvalue spectrum for w = 0.2 and N = 17 and 
N = 76, respectively. The finite difference discretization is used and the LCM method is used to 
obtain the eigenvalue spectrum. The approximation to the continuous spectra associated with 
equations (8) and (11) can be identified clearly. The branches described by equation (9) has not 
been shown due to the large magnitude of the eigenvalues. As can be observed, the resolution of 
both components of the continuous spectra improves with increases in the value of N .  It is to be 
expected that, as iV+ 00, the approximate spectra would converge to the analytic expressions. 

Figures 2(a) and 2(b) also show how the presence of the continuous eigenvalue spectra can 
conceal or mask discrete eigenvalues in the wave number plane. However, in the phase velocity 
plane, the continuous spectra are separated from the discrete spectrum. This is shown in Figure 3. 
The complex phase velocity, c=o/a,  for the discrete eigenvalue, for w=O2,  is 
(0.51845, -0.87404). Thus, in the present case, the discrete spectrum can be observed better in the 
phase velocity plane. 

Figures 4(a)-4(c) show the eigenvalue spectra for w=O*2 using the CC, the FD and the CT 
methods, respectively. The discrete eigenvalues are predicted accurately for all the discretization 
methods. The characteristics of the continuous spectrum, associated with the critical point, given 
by equation (8), are captured by all the discretization methods. The accuracy of the numerical 
predictions also increases with increasing values of N .  Despite the oscillatory nature of the 
corresponding eigenfunctions as y+ co, the CC and FD methods give good approximations to 
the continuous spectrum associated with the domain unboundedness. Again, the accuracy 
increases with increasing values of N .  However, the CT predictions of this component of the 
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Figure 3. Eigenvalue spectra in the complex phase velocity plane. o = 0.2, N = 17. Legend: See Figure 2 
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Figure 4. Eigenvalue spectra for w =0.2: 0, N = 26, r = 2.0; A ,  N =46, r = 2.0; 0, N = 76, r = 2.0; x , N = 76, r = 0.5. 
(a) Chebyshev collocation method; (b) Finite difference method; (c) Chebyshev tau method 
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Figure 4. (Continued) 

continuous spectrum are sensitive to the value of the mapping parameter r, even for relatively 
high values of N .  It is possible that this weakness in the CT predictions is due to their inability to 
approximate the rapidly oscillating eigenfunctions in the mapped domain. However, we have no 
satisfactory evidence at this time to support this proposition. 

CONCLUSIONS 

Three discretization schemes, including a second-order finite difference, a Chebyshev tau and 
a Chebyshev collocation method, have been applied to calculate the eigenvalue spectrum that 
describes the spatial inviscid instability of a free-mixing layer. 

All of the discretization methods are capable of predicting the discrete spectrum as well as the 
continuous spectrum associated with the critical point singularity of the Rayleigh equation. The 
continuous spectrum associated with the unbounded domain can also be predicted well by the 
three methods. Nevertheless, the Chebyshev tau predictions of this latter branch of the eigenvalue 
spectrum are somewhat sensitive to the value of the mapping parameter in the square-root 
transformation. It appears that the square-root transformation used here is a viable alternative to 
the three transformations tested by Grosch and Orszag’ for free shear flows. The global 
eigensolution methods studied here may be applied very efficiently to obtain either an approx- 
imation to the complete eigenvalue spectrum or initial guesses for a local shooting procedure for 
the discrete part of the spectrum. 
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